HGV6021/6022/6024

11MHZ CMOS Rail-to-Rail IO Opamps

Features

• Single-Supply Operation from +2.1V ~ +5.5V

• Rail-to-Rail Input / Output

Gain-Bandwidth Product: 11MHz (Typ.)

Low Input Bias Current: 1pA (Typ.)

• Low Offset Voltage: 3.5mV (Max.)

High Slew Rate: 9V/µs

Settling Time to 0.1% with 2V Step: 0.3μs

Low Noise: 8nV/ Hz @10kHz

• Quiescent Current: 1.1mA per Amplifier (Typ.)

Operating Temperature: -40°C ~ +125°C

• Small Package:

HGV0721 Available in SOT23-5, SOP-8 and SC70-5 Packages

HGV6022 Available in SOP-8 and MSOP-8 Packages
HGV6024 Available in SOP-14 and TSSOP-14 Packages
HGV6021N Available in SOT23-6 and SC70-6 Packages

General Description

The HGV602X have a high gain-bandwidth product of 11MHz, a slew rate of 9V¼ s, and a quiescent current of 1.1mA per amplifier at 5V. The HGV602X are designed to provideoptimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for HGV602X. They are specified over the extended industrial temperature range (-40 °C to +125 °C). The operating range is from 2.1V to 5.5V. The HGV6021 sin gle is available in Green SC70-5, SOT23-5 and SOP-8 packages. The HGV6022 dual is available in Green SOP-8 and MSOP-8 packages. The HGV6024 Quad is available in Green SOP-14 and TSSOP-14 packages.

Applications

- Sensors
- Active Filters
- Cellular and Cordless Phones
- Laptops and PDAs

- Audio
- Handheld Test Equipment
- Battery-Powered Instrumentation
- A/D Converters

Pin Configuration

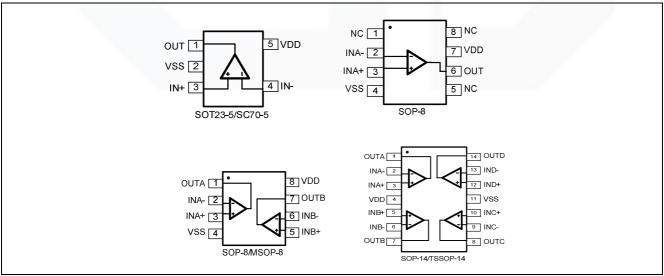


Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+160	°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+260	+260°C		
Package Thermal Resistance (TA=+25℃)				
SOP-8, θ _{JA}	125°0	C/W		
MSOP-8, θ _{JA}	216°0	C/W		
SOT23-5, θ _{JA}	190°C	C/W		
SOT23-6, θ _{JA}	190°C	C/W		
SC70-5, θ _{JA}	333°0	C/W		
ESD Susceptibility				
НВМ	8K	V		
MM	400	V		

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
		HGV6021-CR	SC70-5	Tape and Reel,3000	6021
HGV6021	Single	HGV6021-TR	SOT23-5	Tape and Reel,3000	6021
		HGV6021-SR	SOP-8	Tape and Reel,4000	HGV6021
HGV6022	Dual	HGV6022-SR	SOP-8	Tape and Reel,4000	HGS6022
HGV6022	Duai	HGV6022-MR	MSOP-8	Tape and Reel,3000	HGV6022
HGV6024	Quad	HGV6024-TR	TSSOP-14	Tape and Reel,3000	HGV6024
ПС V 6024	Quad	HGV6024-SR	SOP-14	Tape and Reel,2500	HGV6024

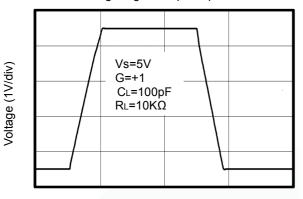
Electrical Characteristics

(At Vs=5V, T_A = +25 °C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.)

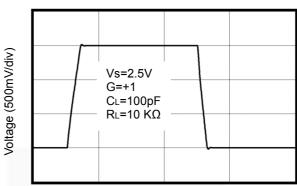
		HGV6021/2/4						
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
PARAMETER	CONDITIONS	+25℃	+25℃	0℃ to 70℃	-40 °C to 85 °C	-40 ℃ to	UNITS	MIN /
INPUT CHARACTERISTICS		I			1	ı	I	
Input Offset Voltage (Vos)		0.8	3.5	3.9	4.3	4.6	mV	MAX
Input Bias Current (I _B)		1					pA	TYP
Input Offset Current (Ios)		1					pA	TYP
Input Common Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1 to +5.6					V	TYP
Common Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	82	65	64	64	63	dB	MIN
common more i tojection i talic (cim a s)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	75					dB	MIN
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega, V_O = 0.15V \text{ to } 4.85V$	90	80	76	75	68	dB	MIN
, , , ,	$R_L = 10k\Omega, V_O = 0.05V \text{ to } 4.95V$	108					dB	MIN
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)		2.4					μ V /℃	TYP
OUTPUT CHARACTERISTICS								<u> </u>
Output Voltage Swing from Rail	R _L = 600Ω	0.1					V	TYP
	$R_L = 10k\Omega$	0.015					V	TYP
Output Current (I _{OUT})		70	55	45	42	38	mA	MIN
Closed-Loop Output Impedance	f = 100kHz, G = 1	7.5					Ω	TYP
POWER-DOWN DISABLE					1	JI.		1
Turn-On Time		1.1					μs	TYP
Turn-Off Time		0.3					μs	TYP
DISABLE Voltage-Off			0.8				V	MAX
DISABLE Voltage-On			2				V	MIN
POWER SUPPLY					•			
Operating Voltage Range			2.1	2.1	2.1	2.1	V	MIN
			5.5	5.5	5.5	5.5	V	MAX
Power Supply Rejection Ratio (PSRR)	V _S = +2.5V to +5.5V							
	$V_{CM} = (-V_S) + 0.5V$	04	74	70	70	60	٩D	MIN
Quiescent Current/Amplifier (I _Q)	I _{OUT} = 0	91	74 1.5	72 1.65	1.7	68 1.85	dB mA	MIN MAX

Electrical Characteristics

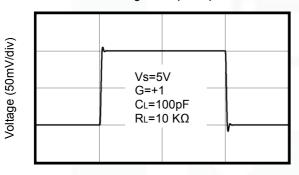
(At Vs=5V, T_A = +25 °C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.)


		HGV6021/2/4							
DADAMETED	CONDITIONS	TYP		TEMPERAT	MPERATURE				
PARAMETER	CONDITIONS	+25°C		0℃ to 70℃	-40°C to 85°C	-40℃to 125℃	UNITS	MIN /	
DYNAMIC PERFORMANCE	·								
Gain-Bandwidth Product (GBP)	$R_L = 10k\Omega$, $C_L = 100pF$	11					MHz	TYP	
Phase Margin (φ _O)	$R_L = 10k\Omega$, $C_L = 100pF$	51					Degrees	TYP	
Full Power Bandwidth (BWP)	$<$ 1% distortion, R _L = 600 Ω	400					kHz	TYP	
Slew Rate (SR)	G = +1, 2V Step, R_L = 10k Ω	9					V/µs	TYP	
Settling Time to 0.1% (t _S)	G = +1, 2V Step, R_L = 600 Ω	0.3					μs	TYP	
Overload Recovery Time	V _{IN} ·Gain = VS, R _L = 600Ω	1.5					μs	TYP	
NOISE PERFORMANCE								•	
Voltage Noise Density (e _n)	f = 1kHz	11.5					nV/\sqrt{Hz}	TYP	
	f = 10kHz	8					nV/\sqrt{Hz}	TYP	

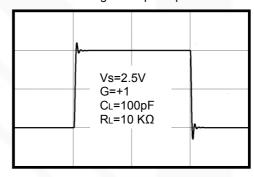
Typical Performance characteristics


(At Vs=5V, T_A = +25°C, V_{CM} = Vs/2, R_L = 600 Ω , unless otherwise noted.)

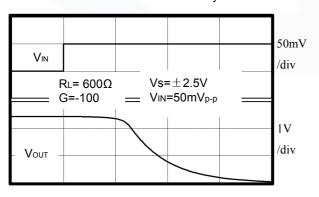
Large-Signal Step Response


Time (1µs/div)

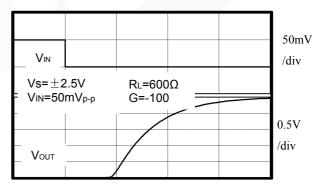
Large-Signal Step Response


Time (1µs/div)

Small-Signal Step Response


Time (1µs/div)

Small-Signal Step Response

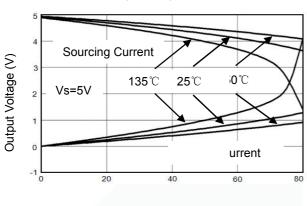

Time (1µs/div)

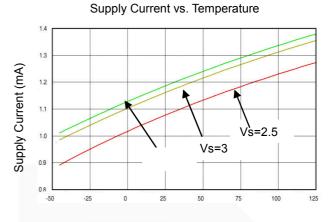
Positive Overload Recovery

Time (2µs/div)

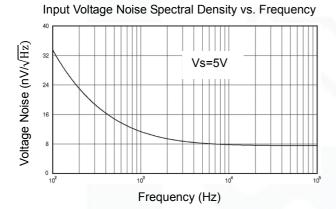
Negative Overload Recovery

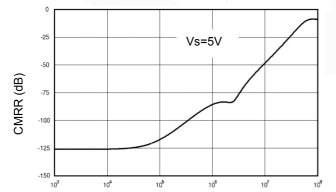
Time (2µs/div)


Voltage (50mV/div)


Typical Performance characteristics

Output Voltage Swing vs. Output Current


(At Vs=5V, T_A = +25°C, V_{CM} = Vs/2, R_L = 600 Ω , unless otherwise noted.)

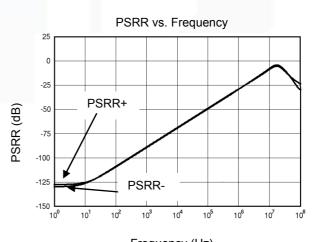


Temperature (°C)

Frequency (Hz)

CMRR vs. Frequency

Open Loop Gain, Phase Shift vs. Frequency


(gp) ueo

Vs=5V

CL=100pF

RL=10 ΚΩ

Frequency (Hz)

Frequency (Hz)

Phase Shift (Degrees)

Application Note

Size

HGV602X series op amps are unity-gain stable and stable for a wide range of general-purpose applications. The small footprints of the HGv602X series packages save spaceon printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

HGV602X series operates from a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 1.1mA per channel) of HGV602X series will help to maximize battery lifeThey are ideal for battery powered systems

Operating Voltage

HGV602X series operate under wide input supply voltage (2.1V to 5.5V). In addition, all temperature speci fications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime

Rail-to-Rail Input

The input common-mode range of HGV602X series extens 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of HGV602X series can typically swing to less that Ω from supply rail in light resistive loads (>100k Ω), and 15mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The HGV602X family is optimized for bandwidth and sped, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

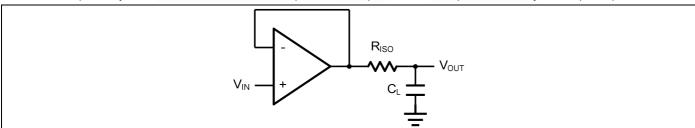


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_F

HGV6021/6022/6024

and $R_{\rm ISO}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

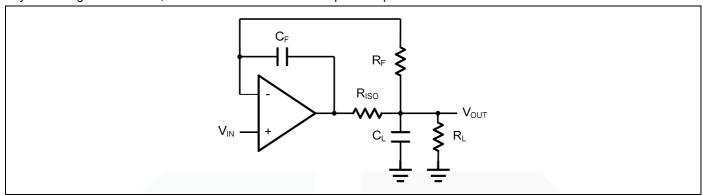


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using HGV602X.

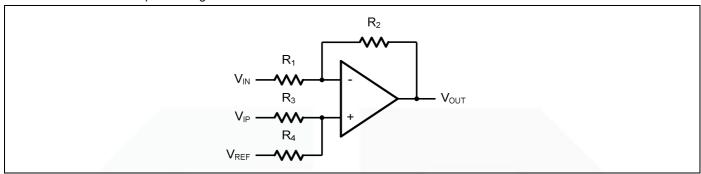


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_2}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

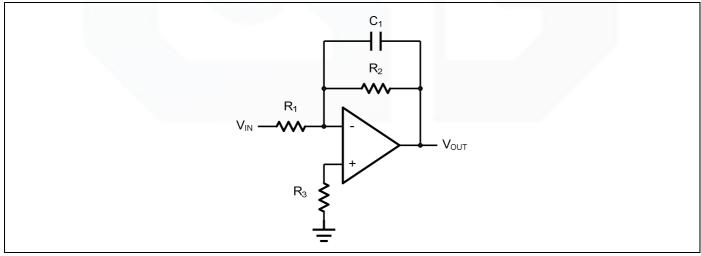
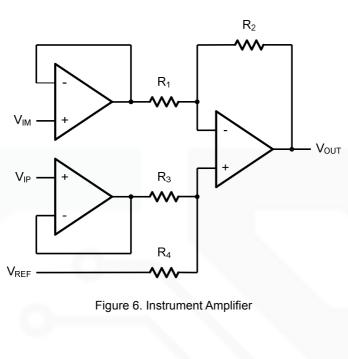
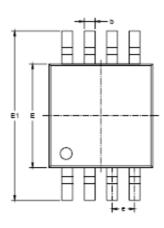
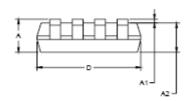



Figure 5. Low Pass Active Filter

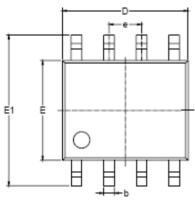
Instrumentation Amplifier

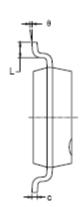

The triple HGV602X can be used to build a three-op- \tan p instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

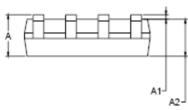


Package Information

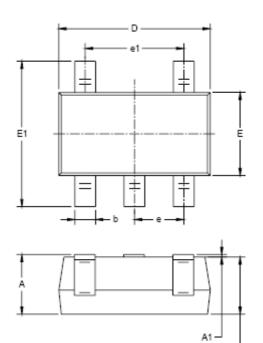
MSOP-8

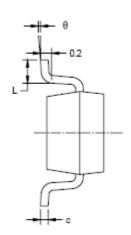





Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
•	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650	BSC	0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	
				-	

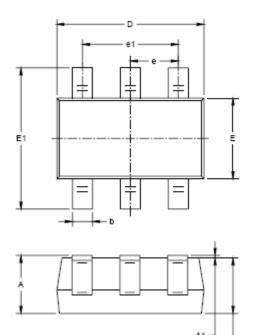
SOP-8

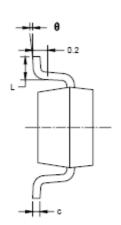




Symbol		nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

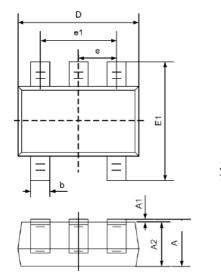
SOT23-5

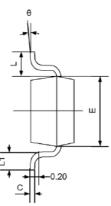




Symbol		nsions imeters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950) BSC	0.037 BSC		
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	
				-	

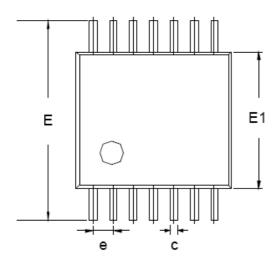
SOT23-6

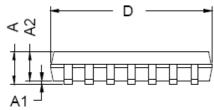


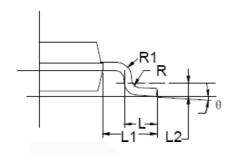


Symbol		nsions imeters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037 BSC		
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

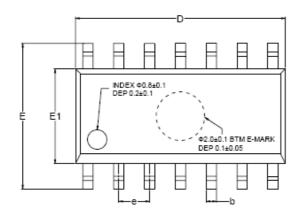
SC70-5

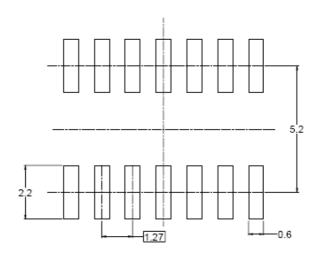




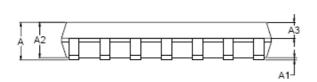

	Dimens	sions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650T	ΥP	0.026T	ΥP	
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

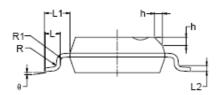
TSSOP-14





	Dimensions				
Symbol	In Millimeters				
Symbol	MIN	TYP	MAX		
А	-	-	1.20		
A1	0.05	-	0.15		
A2	0.90	1.00	1.05		
b	0.20	-	0.28		
С	0.10	-	0.19		
D	4.86	4.96	5.06		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
е		0.65 BSC			
L	0.45	0.60	0.75		
L1	1.00 REF				
L2	0.25 BSC				
R	0.09	-	-		
θ	0°	-	8°		




SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

	Dimensions In Millimeters			Dimensions In Inches		
Symbol		1			1	
	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
Е	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
e		1.27 BSC			0.050 BSC	
L	0.45		0.80	0.018		0.032
L1		1.04 REF			0.040 REF	
L2		0.25 BSC			0.01 BSC	
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°